LARA - A Design Concept for Lattice-based Encryption

نویسنده

  • Rachid El Bansarkhani
چکیده

Lattice-based encryption schemes still su er from a low message throughput per ciphertext and ine cient solutions towards realizing enhanced security characteristics such as CCA1or CCA2-security. This is mainly due to the fact that the underlying schemes still follow a traditional design concept and do not tap the full potentials of LWE. In particular, many constructions still encrypt data in an one-time-pad manner considering LWE instances as random vectors added to a message, most often encoded bit vectors. The desired security features are also often achieved by costly approaches or less e cient generic transformations. Recently, a novel encryption scheme based on the A-LWE assumption (relying on the hardness of LWE) has been proposed, where data is embedded into the error term without changing its target distributions. By this novelty it is possible to encrypt much more data as compared to the classical approach. Combinations of both concepts are also possible. In this paper we revisit this approach and propose amongst others a standard model variant of the scheme as well as several techniques in order to improve the message throughput per ciphertext. Furthermore, we introduce a new discrete Gaussian sampler, that is inherently induced by the encryption scheme itself, and present a very e cient trapdoor construction of reduced storage size. More precisely, the secret and public key sizes are reduced to just 1 polynomial, as opposed to O(log q) polynomials following previous constructions. Finally, we give a security analysis as well as an e cient implementation of the scheme instantiated with the new trapdoor construction. In particular, we attest high message throughputs (message expansion factors close to 1-2) at running times comparable to the CPA-secure encryption scheme from Lindner and Peikert (CTRSA 2011). Our scheme even ensures CCA (or RCCA) security, while entailing a great deal of exibility to encrypt arbitrary large messages or signatures by use of the same secret key. This feature is naturally induced by the characteristics of LWE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Image Encryption Model Based on Hybridization of Genetic Algorithm, Chaos Theory and Lattice Map

Encryption is an important issue in information security which is usually provided using a reversible mathematical model. Digital image as a most frequently used digital product needs special encryption algorithms. This paper presents a new encryption algorithm high security for digital gray images using genetic algorithm and Lattice Map function. At the first the initial value of Logistic Map ...

متن کامل

Image Encryption by Using Combination of DNA Sequence and Lattice Map

In recent years, the advancement of digital technology has led to an increase in data transmission on the Internet. Security of images is one of the biggest concern of many researchers. Therefore, numerous algorithms have been presented for image encryption. An efficient encryption algorithm should have high security and low search time along with high complexity.DNA encryption is one of the fa...

متن کامل

QTRU: quaternionic version of the NTRU public-key cryptosystems

In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...

متن کامل

Classification of Lattice-based Fully Homomorphic Encryption from Noisy Polly Cracker*

Lattices have been used to construct many cryptographic primitives after Ajtai’s seminal paper in 1996. The goal of this paper is to design novel cryptographic primitives using lattices, which are still found to be no polynomial time attack by quantum computers. For achieving this, we survey the known lattice-based cryptography and lattice-based fully homomorphic encryption schemes as a first s...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017